532 research outputs found

    Sensitivity of cross-sectional compliance to manufacturing tolerances for wind turbine blades

    Get PDF
    Wind-turbine blades are complex structures and, despite advancements in analysis techniques, differences persist between predictions of their elastic response and experimental results. This undermines confidence in the ability to reliably design and certify novel blade designs that include self-regulating features like bend-twist coupling To address these discrepancies, this study investigates the influence of manufacturing tolerances on the compliance properties of blade cross-sections, focusing specifically on a previously disregarded feature: the trailing edge bond-line. To conduct this investigation, the validated cross-sectional modelling tools BECAS and VABS are used to demonstrate that even small geometric variations can have significant influence on cross-sectional stiffness properties. The results are further examined and substantiated through the utilisation of 3D finite element models, adopting both shell and solid elements. We conclude that an accurate geometric representation of the cross-section is necessary to adequately capture the shear flow within it and assure accurate predictions on cross-sectional stiffness properties.</p

    Enabling Raspberry Pi Performance Counter Support on Linux perf_event

    Get PDF
    ABSTRACT The Raspberry Pi is a low-cost, low-power, embedded ARM platform designed for use as an educational tool. The ARMv6 processor core included on the Raspberry Pi includes support for hardware performance counters (low-overhead registers that can provide detailed architectural performance measurements). Support for these counters is available for ARM Linux via the perf event interface, but not enabled by default for the Raspberry Pi. In this paper we investigate why the counters were not enabled, describe what steps are needed to enable them, and then validate the results to ensure they are working. We contributed the patches needed to enable the counters to upstream Linux maintainers so that support will be available by default for all users

    Code density concerns for new architectures

    Full text link
    Reducing a program\u27s instruction count can improve cache behavior and bandwidth utilization, lower power consumption, and increase overall performance. Nonetheless, code density is an often overlooked feature in studying processor architectures. We hand-optimize an assembly language embedded benchmark for size on 21 different instruction set architectures, finding up to a factor of three difference in code sizes from ISA alone. We find that the architectural features that contribute most heavily to code density are instruction length, number of registers, availability of a zero register, bit-width, hardware divide units, number of instruction operands, and the availability of unaligned loads and stores. We extend our results to investigate operating system, compiler, and system library effects on code density. We find that the executable starting address, executable format, and system call interface all affect program size. While ISA effects are important, the efficiency of the entire system stack must be taken into account when developing a new dense instruction set architecture

    Ultrasound-determined diameter measurements are more accurate than axial computed tomography after endovascular aortic aneurysm repair

    Get PDF
    ObjectiveThis study evaluated the correlation of ultrasound (US)-derived aortic aneurysm diameter measurements with centerline, three-dimensional (3-D) reconstruction computed tomography (CT) measurements after endovascular aortic aneurysm repair (EVAR).MethodsConcurrent CT and US examinations from 82 patients undergoing post-EVAR surveillance were reviewed. The aortic aneurysm diameter was defined as the major axis on the centerline images of 3-D CT reconstruction. This was compared with US-derived minor and major axis measurements, as well as with the minor axis measurement on the conventional axial CT images. Correlation was evaluated with linear regression analyses. Agreement between different imaging modalities and measurements was assessed with Bland-Altman plots.ResultsThe correlation coefficients from linear regression analyses were 0.92 between CT centerline major and US minor measurements, 0.94 between CT centerline major and US major measurements, and 0.93 between CT minor and centerline major measurements. Bland-Altman plots showed a mean difference of 0.11 mm between US major and CT centerline measurements compared with 5.38 mm between US minor and CT centerline measurements, and 4.25 mm between axial CT minor and centerline measurements. This suggested that, compared with axial CT and US minor axis measurements, US major axis measurements were in better agreement with CT centerline measurements. Variability between major and minor US and CT centerline diameter measurements was high (standard deviation of difference, 4.27-4.84 mm). However, high variability was also observed between axial CT measurements and centerline CT measurements (standard deviation of difference, 4.36 mm).ConclusionsThe major axis aneurysm diameter measurement obtained by US imaging for surveillance after EVAR correlates well and is in better agreement with centerline 3-D CT reconstruction diameters than axial CT

    Evidence for an oscillatory singularity in generic U(1) symmetric cosmologies on T3×RT^3 \times R

    Get PDF
    A longstanding conjecture by Belinskii, Lifshitz, and Khalatnikov that the singularity in generic gravitational collapse is locally oscillatory is tested numerically in vacuum, U(1) symmetric cosmological spacetimes on T3×RT^3 \times R. If the velocity term dominated (VTD) solution to Einstein's equations is substituted into the Hamiltonian for the full Einstein evolution equations, one term is found to grow exponentially. This generates a prediction that oscillatory behavior involving this term and another (which the VTD solution causes to decay exponentially) should be observed in the approach to the singularity. Numerical simulations strongly support this prediction.Comment: 15 pages, Revtex, includes 12 figures, psfig. High resolution versions of figures 7, 8, 9, and 11 may be obtained from anonymous ftp to ftp://vela.acs.oakland.edu/pub/berger/u1genfig

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Enamel-like apatite crown covering amorphous mineral in a crayfish mandible

    Get PDF
    Carbonated hydroxyapatite is the mineral found in vertebrate bones and teeth, whereas invertebrates utilize calcium carbonate in their mineralized organs. In particular, stable amorphous calcium carbonate is found in many crustaceans. Here we report on an unusual, crystalline enamel-like apatite layer found in the mandibles of the arthropod Cherax quadricarinatus (freshwater crayfish). Despite their very different thermodynamic stabilities, amorphous calcium carbonate, amorphous calcium phosphate, calcite and fluorapatite coexist in well-defined functional layers in close proximity within the mandible. The softer amorphous minerals are found primarily in the bulk of the mandible whereas apatite, the harder and less soluble mineral, forms a wear-resistant, enamel-like coating of the molar tooth. Our findings suggest a unique case of convergent evolution, where similar functional challenges of mastication led to independent developments of structurally and mechanically similar, apatite-based layers in the teeth of genetically remote phyla: vertebrates and crustaceans

    Bright Green Biofluorescence in Sharks Derives from Bromo-Kynurenine Metabolism

    Full text link
    Although in recent years there has been an increased awareness of the widespread nature of biofluorescence in the marine environment, the diversity of the molecules responsible for this luminescent phenotype has been mostly limited to green fluorescent proteins (GFPs), GFP-like proteins, and fluorescent fatty acid-binding proteins (FABPs). In the present study, we describe a previously undescribed group of brominated tryptophan-kynurenine small molecule metabolites responsible for the green biofluorescence in two species of sharks and provide their structural, antimicrobial, and spectral characterization. Multi-scale fluorescence microscopy studies guided the discovery of metabolites that were differentially produced in fluorescent versus non-fluorescent skin, as well as the species-specific structural details of their unusual light-guiding denticles. Overall, this study provides the detailed description of a family of smallmolecules responsible formarine biofluorescence and opens newquestions related to their roles in central nervous system signaling, resilience to microbial infections, and photoprotection
    • …
    corecore